The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival.

نویسندگان

  • Melissa M Grant
  • Vicki S Barber
  • Helen R Griffiths
چکیده

Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the mechanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y.

Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), i...

متن کامل

Induction of tyrosine kinase receptor b by retinoic acid allows brain-derived neurotrophic factor-induced amyloid precursor protein gene expression in human SH-SY5Y neuroblastoma cells.

Retinoic acid (RA) is a potent regulator of morphogenesis, growth and cell differentiation. Incubation with RA causes arrest of proliferation and neurite extension in SH-SY5Y cells, a neuroblastoma cell line of human origin. In these cells, RA regulates the expression of the beta-amyloid precursor protein. The retinoid increases the levels of intracellular and secreted forms of APP (amyloid pre...

متن کامل

Coffee Modulates the Function of Brain-Derived Neurotrophic Factor (BDNF) in Human Neuroblastoma SH-SY5Y Cells

Recent epidemiological studies showed that daily coffee consumption is associated with a lower risk for several neurological disorders such as Alzheimer’s disease and Parkinson’s disease; however, the molecular mechanisms responsible for the protective effect of coffee against neurological disorders have not been elucidated. As brain-derived neurotrophic factor (BDNF) promotes neuronal survival...

متن کامل

Hydrogen Peroxide Toxicity Induces Ras Signaling in Human Neuroblastoma SH-SY5Y Cultured Cells

It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of t...

متن کامل

Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells

Alzheimer's disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25-35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteomics

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2005